AMADEE-20 Mars simulation

B etween 04-31Oct2021, the Austrian Space Forum – in cooperation with the Israel Space Agency as the host agency and D-MARS – will conduct an integrated Mars analog field mission in the Negev Desert in Israel. The expedition will be carried out in a Martian terrestrial analog and directed by a dedicated Mission Support Center in Austria. A small field crew of highly trained analog astronauts with spacesuit simulators will conduct experiments preparing for future human and robotic Mars exploration missions.

Simulating Mars Human-robotic surface activities in terrestrial analogs has evolved into an efficient tool for developing exploration mission architectures. They facilitate to understand the advantages and limitations of future Human planetary missions, becoming an added value for the development of remote science operations, helping to understand the constraints and opportunities of the technology and workflows

AMADEE-20 general description (787 KB)

General description, mission aims and preliminary exerpiments of the AMADEE-20 Mars Simulation, Israel, Oct/Nov 2020

The AMADEE-20 test site

The test site is located in the Negev desert in southern Israel within the erosion structures of the Ramon Crater: Although not an impact crater, but a rare form of erosion structures, it has a resemblance to various Mars surface features, and a variety of terrain types relevant to Mars exploration. The test site offers a wide range of sand and rocky surfaces combined with a broad variability in inclination. The test site could be compared to the Vallis Marineris structure on Mars. The nearest city is Mitzpe Ramon. Expected temperatures at the test site in November typically range between 10-20°C with low chance of precipitation.

Ramon Crater, Negev Desert, Israel

AMADEE-20 test site / Negev Desert, Israel

 

Scientific experiments

ACT
Goldsmiths University of London, UK
Acceptance and Commitment Therapy

Affiliation: Institute of Management Studies, Goldsmiths University of London, United Kingdom

During his work with space professionals, premier athletes and Olympians principal investigator Karoly Schlosser, Ph.D., recognized different means by which high-performing individuals and teams are able to strive in challenging contexts. Knowing how to handle feelings and emotions and how to understand one’s own mind will have an impact on productivity, teamwork and resilience among other things. In order to improve the crew’s health during the AMADEE-20 mission he will train the six analog astronauts plus additional members of the OeWF’s Mission Support Center using the Acceptance and Commitment Therapy (ACT) forms.
Schlosser explains: “By teaching people to understand the functions of their own involuntary thoughts, emotions and their reactions to them. we can show individuals the common ways how the human mind reacts in response to certain events. Learning that we can all react similarly at some point, we can foster awareness and cultivate a sense of compassion to each other, presence when we need it most, acceptance of difficulties, and commitment to the values we share -by increasing psychological flexibility people can choose to take actions deliberately towards what matters for them, while responding to challenges adaptively.”

ACT and how the project works
During the crew training, Karoly Schlosser, Ph.D., will train the OeWF’s six analog astronauts and key members of the Mission Support Center using Acceptance and Commitment Therapy (ACT) and mindfulness techniques based in contextual behavioral science. The training will take place before the mission, so that the crew will already be well-skilled in using these abilities during the mission. To quantify the efficacy of the training, the data collected during the project will be analyzed using advanced research methods. The assessment might lead to new findings that may benefit professionals in the space sector or in other performance domains.
Over 20 years of research shows the efficacy of this intervention in the general population with significant benefits in the field of mental health, as well as in military, sport, education, business or other performance contexts. As Schlosser says: “Finding ways how we can promote valuable skills that the crew can use autonomously to maintain their mental and behavioral health, team cohesion, and productivity will be absolutely crucial in future planetary missions. Space agencies and private companies in the sector, or in fact any organization can benefit from the training.”

AEROSCAN
DOME Drone Operations for Martian Environment, University of Houston, USA, Airvision srl, Italy
Affiliation: University of Houston, Texas, US and University of Venice, Italy in collaboration with six companies from Italy and the US

Visualization of the drone (c) Dome research group

Visualization of the drone (c) Dome research group

An autonomously flying drone helps mapping unknown terrain and assists rescuing lost astronauts
Currently, a research group that functions as a network between students and companies is working on a drone which will participate in the upcoming Mars analog mission. It will be the 4th flying version, whose technology and design have been further developed and upgraded due to the team’s extensive experience in this field. The current version has been specifically designed to facilitate analog astronauts in handling it whilst wearing a space suit. The drone will be used to create a map of a specific area and to assist during a staged rescue mission.

Advantages of a drone
It is the ideal device when it comes to cover a large area with high-resolution pictures in a short amount of time. Orbiters are also used to produce quick and efficient scans of a planet’s surface but circulate from an altitude that limits the resolution of the pictures taken. Rovers on the other hand can provide high-resolution picture but are very slow which means they will not cover a large area in a short time. Therefore, a drone is a good compromise.

Technical details
It works autonomously, weighs about 2.3kg and has a wingspan of around 2m. It is equipped with solar panels attached to the wing’s surface. In combination with a battery, it can fly up to 12 hours continuously.

The drone will take off and land like a helicopter using propellers, which means no space-taking runway is necessary. During flight and in order to save energy, the drone will turn its propellers when switching from VTOL (vertical take-off and landing) mode to plane mode. It will then transform into a plane, which can be either a glider or a propeller aircraft.

How the experiment works
During the mission, the drone will be sent out to take high-resolution pictures of a pre-defined area. With those pictures, a map can be created. Therefore, it is not necessary to send out analog astronauts into unknown terrain which will in turn decrease possible risks.
As part of the simulated Mars mission the analog astronauts will stage that they have got lost in the field. While the recovery team will be putting on their spacesuits, the drone will be sent out to look for the lost team and determine their exact position. Once the “lost” analog astronauts are found, the positioning data will be relayed to the recovery team.

Outlook
Results from the AMADEE-20 mission will help to further improve this technology. For future stages of the project the team envisions to use material like carbon fiber or certain kinds of plastic that can be reproduced easily in a habitat on Mars using a 3D printer. In case a component of the drone breaks or needs to be changed, astronauts on the Red Planet can simply print it. In addition to that, the team also wants astronauts to be able to adapt the drone design. For example, the wingspan: if the astronauts wanted to cover a larger area, they would have to print longer wings. If the focus lay on a small area only, a wingspan of 2m would not be necessary, hence astronauts could shorten the length on their own.
Another development the AEROSCAN-team is striving for are inflatable wings. This way it will on the one hand be ensured that nothing gets damaged during transportation of the drone. On the other hand, the drone would not take up too much of storage space. With low-cost recoverable parts and the ability to function as an aircraft and helicopter, the drone will be less expensive and more efficient than conventional drones.
Website: domeproject.space

AMAZE
Institute of Smart Systems, Univ. of Klagenfurt, Austria
Autonomous Mars-Analog Zone Exploration
Affiliation: Institute of Smart System Technologies, University of Klagenfurt, Austria in cooperation with NASA’s Jet Propulsion Laboratory (JPL)

processed image of the helicopter to show the concept (c) AAU-CNS

processed image of the helicopter to show the concept (c) AAU-CNS

Navigating with the eyes of a camera: How can helicopters navigate on Mars?
Machines usually use navigation systems such as GPS to locate themselves in outdoor areas. However, other planets do not have such a system yet. Thus, different methods need to be found to use helicopters for the exploration of another planet. In Austria, a team at the University of Klagenfurt is researching the question, “How can a robot navigate and localize itself without GPS”. The project AMAZE aims to answer this question.
The core of the AMAZE project within the Analog Mars mission AMADEE-20, which is led by the Austrian space agency (OEWF), is the camera-based navigation. For this, a helicopter is equipped with a camera that serves the same purpose as the human eye.
The camera is used to visually detect the environment, sense obstacles, and allow safe navigation in the surrounding area. The “brain” of the camera will record impressive and informative imagery of the Mars surface, which will help us, humans, to understand the red planet just a bit better.

How the experiment works
Co-Investigator of AMAZE, Christian Brommer explains how it works: “The goal is to record information of the surface fast and efficiently to accurately determine changes in the position of the helicopter. Using a helicopter allows us to vary the distance between the camera and the ground, which affects the area, that is covered by a single pixel. This enables us to sense the environment and record images with the quality needed for a specific situation. As an example, we use small distances for the recording of scientific data because it focuses the resolution of the camera to a small area. If we want to travel far distances, high altitude flights are better to gain a more general oversight. Using vision-based navigation allows the helicopter to explore various areas and find its way home or detect the position of astronauts, which might work on the surface. The resolution of these images will be better than the satellite images recorded by the Mars orbiters, which has already helped to understand the planet better.”

About the helicopter
A team of twelve people under the direction of Dr. Stephan Weiss at the University of Klagenfurt is working on finalizing the navigation component of the helicopter. The team already participated in the previous Mars analog mission in 2018 lead by the OEWF. The insights of 2018 helped the team to understand the challenges of camera-based navigation on Mars-like surfaces. The recorded data was used to further improve their algorithms, that are used to navigate the helicopter. A completely new helicopter-platform, an extended sensor suite, and improved algorithms are used to ensure a robust and autonomous mission in October 2021.

Collaboration with the JPL
The team is also happy to welcome two researchers from NASA’s Jet Propulsion Laboratory (JPL), where Dr. Weiss and Mr. Brommer worked previously. The data that is recorded during the AMADEE-20 mission will be shared with JPL for further development of their navigation components toward future Mars missions. First results from a helicopter on Mars are expected in 2021 after NASA’s helicopter scout “Ingenuity”, arrives on the Red planet.

EXOSCOT
Graz University of Technology, Austria
EXO-Mars Science Corporative Training
Affiliation: Institute for Software Technology, Graz University of Technology, Austria

Exoscot navigation demonstration

Exoscot navigation demonstration

Detailed maps for extravehicular activities and individual tasks – what a rover can do!
Students and researchers at the Technical University of Graz in Austria are accepting the challenge to develop a rover which, in combination with flying robots, will prepare the analog astronauts’ field missions. This grouping will further improve the efficiency and safety of the analog astronauts’ activities. Consequently, the EXOSCOT-team deems the rover’s seamless integration into the mission’s exploration cascade essential.

The Rover-Hardware
At the moment the rover, which will serve as a platform for several different instruments, is still in its construction phase. It represents a further development of the robot used during the AMADEE-18 mission. The platform will be bigger, more flexible and faster, reaching top speeds of up to 60km/h. Navigation will be primarily based on cameras, as is common in space travel.

EXOSCOT as part of the exploration cascade
The exploration cascade determines the order in which the AMADEE-20 mission experiments are to be carried out, so that tasks can be executed efficiently and scientifically meaningful. The rover uses previously collected data from the two flying systems AEROSCAN and AMAZE to produce more detailed maps of an area. These maps in turn form the basis for further experiments.
The rover can be used in a variety of ways and ensures that scientists from different fields of expertise receive the data that is important to them: “You can imagine it roughly like this,” explains the head of the experiment Assoc. Prof. Dr. Gerald Steinbauer, “The rover records certain data using the instruments it is carrying at the time. This data could be several photos of a specific environment that can then be used to create different maps of the surroundings. Once this is done, the rover can be given various subtasks to complete. It could take a picture of a stone at a certain time of day, at a certain angle, or take further measurements.” This way, upcoming field missions can be better planned and most of the uncertainties when entering an unknown terrain can be avoided.

GEOS
Austrian Space Forum, Austria
Affiliaton: Austrian Space Forum, Innsbruck, Austria

Learning more about the area through geological processes
The vast opportunity to learn more about the history of an area is through identifying geological processes. This is already being done here on Earth and has led to a detailed understanding of Earth’s history. If we want to extend our knowledge about another planetary body, say Mars for example, it is necessary to determine whether the same geological methods can be applied there as well. Six geologists from the Austrian Space Forum (OeWF) will dedicate themselves to this question during the AMADEE-20 mission.

Their project GEOS aims to achieve two objectives: the identification of geological processes of the area in order to enlighten its geological history and the creation of an analog-astronaut geo-training model for future missions.
GEOS can be divided into four parts: Geomapping, Geosampling, Micrometeorites and Geocompare.

Geomapping takes place before the mission starts and pre-defines the geological and topographical features of the working area. The analog-astronauts will use this as a guide when they will collect rocks and sand samples during the mission. This process is called Geosampling. For this purpose, the analog-astronauts will use classic geology field working tools such as geo-hammers, loupes, magnifier cameras, GPS, geo-compasses. The collected samples will then be analyzed by the GEOS-team. Also, the analog-astronauts will separate metal particles from collected sand samples by using big magnets at the habitat, and seal these metal particles in plastic bags. Those potential “Micrometeorite” particles will then be analyzed by GEOS’ principal investigator Dr. Seda Özdemir. Lastly, Geocompare is based on comparing spatial information acquisition strategies between the analog astronauts and geologist by using thematical/geological maps and the natural environment. GEOS will be the bases for developing training skills as well as training programs for both analog and space astronauts.

However, those tasks also entail certain difficulties. Because of the heavy space suit the analog-astronauts need to wear during field work, their freedom of movement will be restricted. Collecting and sealing samples will therefore require considerable physical strength.
Since the analog-astronauts have only been trained in some aspects of geology, this is the best way to create a geo-training model. Based on the analog-astronauts’ performance in the field, the GEOS-team will develop more efficient and effective tools for geological trainings.
These training models will play a key role in future (analog) missions.

HUMAIN
Austrian Space Forum, Austria
Human-Machine Interface Research for Space Suit Head-up Displays
Affiliation: Austrian Space Forum (OeWF), Innsbruck, Austria

Perceiving risks differently by making trend data visible for astronauts in their helmets

The main focus of this project is to find out whether seeing trend data in the space suit helps analog astronauts to improve their assessment and management of risk. The data in question will be shown in the head-up display (HUD), which is installed in the Space Suit’s helmet. For years the OeWF itself has developed the Aouda Space Suit Simulator and currently uses it during its Mars analog missions.
While previous research on this topic focused on fighter and commercial pilots and how information can be displayed in their cockpits, it is also necessary for astronauts to get relevant data, like temperatures and atmospheric composition within the suit or remaining battery life during an EVA (extra-vehicular activity), particularly in a scenario where mission control is not able to support in real-time, such as is the case during a Mars mission.
The above mentioned Aouda Space Suit Simulator including the HUD was improved over many years. The HUD is able to display sensor data, procedures, maps and videos. For the upcoming mission, the OeWF aims to find out whether or not the analog astronauts, who are wearing the suit during an EVA, will perceive risk differently if they can see the current data as part of trend data rather than a single point in time. The results of this experiment can be useful when it comes to dealing with risk during a space mission. This again will then contribute to even safer and more efficient operations.

Experiment Setup

One can imagine the scenario during the AMADEE-20 mission as follows: An analog astronaut will be shown CO2 and temperature measurements displayed as trend data in the HUD whilst performing an EVA. During another EVA, analog astronauts will have only the current measurements displayed in the HUD. Afterwards, they will fill out a questionnaire focusing on the perceived risk and the situational awareness. Will there be a difference in the analog astronauts’ perception of risk?
“The experiment must not have an active part in the EVAs but rather run quietly and discretely in the background”, explains principal investigator Joao Lousada, MSc, “Therefore, the analog astronauts will be trained to simply work as they normally would, independent of what data type is displayed. Otherwise the way they operate, make decisions and manage risks would be influenced.”
The results of the HUMAIN experiment could contribute not only to future Mars missions but also to displays in aviation or other fields where high amounts of information have to be processed quickly and time-critical decision-making is required.

MEROP
University of Lisbon, Portugal
More Effective Remote Operation of Planetary ground robots (using multimodal interfaces)
Affiliation: Researchers from the Institute for Systems and Robotics of Instituto Superior Técnico, in collaboration with the Interactive Technologies Institute (members of LARSyS) with contributions from ISCTE-IUL, University of Lisbon, Portugal

Merop interface drawing (c) MEROP

Merop interface drawing (c) MEROP

Merop rover drawing (c) MEROP

Merop rover drawing (c) MEROP

Teleoperate a robot by “feeling” its physical state!

A team from the Institute for Systems and Robotics of the University of Lisbon, consisting of two faculty members and two PhD students, created the experiment MEROP whose name is an acronym for the project title. It is the team’s goal to evaluate the benefits of using haptic devices together with remote-controlled robots, in order to enhance the human operator’s notion of what is happening with the robot.
With broad experience of the use of robotic technologies in urban search and rescue scenarios, the team believes that those and planetary exploration scenarios have a few things in common. Both of them use teleoperation of robots to explore a terrain. But this is challenging, since the operator has limited perception of the robot’s situation, like its orientation and whether the wheels have lost traction. In order to address this issue, the experts developed a haptic interface that conveys the condition of the robot to the operator by using devices imitating its orientation and the traction state of the wheels. The operator, who is not sharing the same physical space with the robot, will then feel it in his/her hands by wearing a vibrating glove on one hand and holding a rotating device in the other hand. During the mission, the robot will firstly inspect the base and then scout the path to a hotspot, before an analog astronaut will be sent out there.

Expectations

Expectations are high: the team wants to be able to find a statistically significant benefit of using this device, over a set of relevant metrics. For instance, to show that an astronaut is able to perform a given task faster and safer when using this haptic interface.
Regarding haptic interfaces, some research has been done for the use of teleoperation of planetary rovers. It is, however, still mostly limited to force feedback, as is known from joysticks in different games. Hereby, the joystick would vibrate if something specific happened in the game. But MEROP uses two devices: One to make the inclination of the robot tangible and one that vibrates as soon as the robot gets stuck. Combined sources of sensory information tend to facilitate perception and goal-directed behavior in the physical world. Therefore, the team from Lisbon is looking forward to advance the state of the art by exploring new feedback modalities in the context of planetary exploration.

Website: merop.isr.tecnico.ulisboa.pt

MICROBIOME
Helmholtz Zentrum München, Research Unit for Comparative Microbiome Analysis
Department of Dermatology and Allergology, Technical University of Munich, School of Medicine
Affiliation: Helmholtz Center Munich, Germany – Research Unit Comparative Microbiome Analysis

Observing alterations of human microbiomes

The human microbiome describes all microbiota associated to our body and is a key driver for our health, as it provides important life supporting functions. Thus, it is obvious that an intestinal imbalance (dysbiosis) of our microbiome contributes to the development of various infectious and inflammatory diseases. However, so far it has not been sufficiently reported how long-term missions of astronauts induce changes of our microbiome. To get a deeper understanding of this topic a team from Germany will conduct the so called “MICROBIOME”- experiment during a Mars-analog mission. They will focus on bacteria colonizing the skin of the analog-astronauts and their gastrointestinal tract.
“Being involved in microbiome studies related to space travel is nothing new for the team but the AMADEE-20 mission is a chance to follow these lines and investigate further factors potentially impacting the microbiome”, explains Dr. Bärbel Fösel, principal investigator of this project, “Various studies report an impact of microgravity also on microbes. Moreover, culture-dependent studies have indicated alterations in astronauts’ gastrointestinal tract microbiota. However, more comprehensive data on the interplay of humans, their microbiome and various exposures typically encountered during spaceflight are scarce.”

How the experiment works
The analog-astronauts’ skin and gut microbiome will be characterized before and after the mission. In addition, during the mission samples from the analog-astronauts will be collected at several time points. They will be stored and shipped to laboratories in order to analyze them. In consideration of the analog-astronauts’ health and hygiene as well as environmental factors such as temperature, humidity or radiation, microbiome-related health risks might be defined.
Consequently, based on the obtained data recommendations can be given in order to maintain a healthy microbiome of astronauts during space travel. If significant changes will be observed, countermeasures must be developed including probiotics-based therapies for microbiome stabilization before, during and after the mission.

MICRO-POTENTIAL
Dead Sea and Arava Science Center, Israel,
Tel Aviv University, Israel, Weizmann Institute of Science, Israel
Affiliation: Dead Sea and Arava Science Center, Israel, Desert Mars Analog Ramon Station, Israel, The Weizmann Institute of Science, Tel Aviv University, Israel

Micro-Potential lab work (c) D-MARS

Micro-Potential lab work (c) D-MARS

Soil sampling (c) D-MARS

Soil sampling procedure for Micro-Potential (c) D-MARS

Monitoring microorganisms in order to reduce the risk of cross contamination
According to article IX of the Outer Space Treaty from 1967, Earth and other planets have to be preserved from cross contamination. It is thus important to protect the environment that will be researched as well as the Earth’s environment from backward contamination. Therefore, a four-person team from Israel will perform their project MICRO-POTENTIAL during the AMADEE-20 mission.
Research on contamination of space vehicles before launch has been done before. Likewise it has been determined, whether or not microorganisms can survive space conditions, e.g. high radiation levels, vacuum, low temperatures, etc. No one has, however, tried to look for cross contamination the way this team proposes to do: during an analog mission and by using microbiological as well as molecular analysis tools.
When the crew and their equipment arrive at the habitat in the Negev desert, they will already carry microbial communities on them. In contrast to these, there will also be microbial communities in the Ramon crater which have developed there. They are different from the crew’s organisms, because no human has ever been in the selected field of work before. Points in the crater will be chosen to get a clear understanding of those microbial communities. The communities in question, the ones brought by humans and the ones that evolved in the crater, will be statistically analyzed throughout the duration of the mission. As soon as the analog-astronauts interact with the environment, changes of microbial population will become discernible. This in turn will indicate that the new composition was not created by random processes but by the analog-astronauts’ activities. Hence, cross contamination has occurred.

Although it is not completely possible to remove contamination, since some microorganisms can survive very harsh conditions, monitoring microbiological elements is relevant. The crew and mission control should know which microorganisms they have brought with them. Through samples and analysis, they will know if something new was introduced to the researched environment. Thus, the experiment team will be able to determine who is spreading the microorganisms where to and for how long. Astrobiologist and PI of this project Reut S. Abramovich, PhD, imagines a possible future scenario: “The first human crew lands on Moon or Mars. They will undoubtedly bring with them their own body associated microbiota, gut microbes, skin microbes. Their spaceship will probably also include microbes on the walls, shelves, equipment, space suits etc. due to human contact. Now imagine they have come to investigate a cave on Mars, and that cave will include endemic microorganisms. This will undoubtedly force the human crew to be meticulous and careful in their assessment of the microorganisms they have encountered. We would need to monitor the spread of microbes in both directions: from the human crew to the environment – via their spacesuit segments, rovers or other equipment – and from the environment onto the human crew.”

MOVE
International Space University, Human Performance in Space Department, France
Keeping the analog astronauts healthy by tracking bowel movements

For the MOVE-experiment, the analog astronauts will track their bowel movements by reporting the frequency and consistency of their own stool on a daily basis. Their data will be submitted to the mission support center’s medical team once a week, unless there is a medical issue that requires immediate reporting. That way, the crew’s health will be ensured throughout the analog Mars mission. Furthermore, results from this project can be used to create more efficient prevention strategies for future planetary (analog) missions.

Principal Investigator, Dr. Tricia L. Larose, believes this is an understudied area that could have a big impact on analog astronaut health and well-being. Together with the Austrian Space Forum (OeWF), she is also creating a school outreach program in order to raise public awareness. Everyone should be familiar with factors that can impact their bowel movements as these changes might have negative impacts on one’s health. The sooner one notices changes, the sooner one can do something about it. Various factors such as diet, dehydration or increased stress could be responsible for a different frequency, consistency or color of the stool. Diarrhea or blood in the stool may indicate an infection.

How the experiment works
To gain a better understanding of the effects so-called “environmental stressors” have on bowel function, an analog mission is the ideal opportunity. The following stressors can easily impact the health and wellness of the crew, resulting in abnormal bowel movements:

  • high stress
  • isolation and confinement
  • changes in air, water and food
  • living in close quarters with multiple people for a long period of time
  • sharing spacesuits
  • desert environment
  • stressed immune system
  • infection

The analog astronauts will monitor their bowel movement daily. They know how healthy and unhealthy bowel movements look because of the Bristol Stool Scale for Children (Figure 1). The experiment is using the scale for children, rather than the one for adults, because it is colorful and humorous, and because the outreach program in schools will use the same version of the scale. The scale seen below will be attached to the inside of all toilet doors in the habitat. As soon as an analog astronaut notices an unhealthy bowel movement, they will report it to the medical team. If necessary, medical care will be provided.
Results of MOVE will have an impact on preparing for future missions as well as on our daily life.

MOVE goes to School!
As mentioned before, an outreach program has been created. It is called “MOVE goes to School!””. For this campaign, experts will visit several elementary schools in Austria in order to inform children about bowel movements and how to monitor them. Students will also learn what to do to ensure healthy bowel movements, like drinking enough water, exercising, talking about it, etc.

MSG
Eco-encounter study institute in ENAV NGO, Israel
Movement, Space and Group-health in a confined area
Affiliation: Eco-Encounter Study Institute, Tel Aviv, Israel

Analyzing the impact of isolation on a group’s psychological health
During AMADEE-20, a team from Israel will take a closer look at the individual psychological state of the analog-astronauts and the group’s health in general. MSG is a study conducted by a team of Israeli experts during AMADEE-20 aimed to investigate possible ways for the crew of a long mission in space to mitigate the detrimental psychological effects of long-term confinement using the limited space allowed in such missions. By embedding sensors in the habitat, the MSG-team will be able to monitor movement patterns of the analog astronauts. Analyzing individual movement, combined with group and individual performance and wellbeing, the researchers seek patterns of the use of space that facilitate group well-being.

“Confined places have a detrimental effect on health and especially on mental health. Sharing a confined space with others can help with some of the issues of confinement but also presents new challenges. This is especially challenging in long missions, where social interactions are more dynamic and more influential.”, explains the project leader David Michaeli, “In the area of behavioral health, emotional constructs need to be researched to the same extent as other factors such as attention and fatigue”, explains the principal investigator David Michaeli, “In the area of behavioral health, emotional constructs need to be researched to the same extent as other factors such as attention and fatigue”

How the experiment works
For this experiment, three new questionnaires have been developed for the analog-astronauts to fill out before, during, and after the mission. One of the questionnaires was developed to be filled daily, using a hand-held device. The questionnaires collect reports of group and personal well-being as well as other social indicators. In addition to the self-report data, sensors will be embedded on the analog Astronauts to record their position in the mock spacecraft throughout the mission. Location data automatically collected periodically will be analyzed to discern mutually correlated movement to learn how the team utilized the limited space in order to maintain healthy group functioning, and how personal and group crises might affect use of space.

Expected Outcomes
The study is expected to benefit future planning of missions in two distinct ways. First, it offers a novel outlook at the components that constitute healthy and productive social environment, and the way confinement and isolation might affect it. Second, by studying movement on the individual level, the experts search for environmental factors that allow the team to maintain healthy group mentality and to alleviate tension when it arises. These insights could be used in planning confined spaces later on in a way that will alleviate some of the stress that accompanies such social conditions.

PSYCHSCALE
International Space University, France, Human Performance in Space Department, France
Studies about crew anxiety and depression during the AMADEE-20- mission
In extreme situations like analog Mars missions, even the strongest individual might face psychological challenges at some point. Amongst other things, reasons for this could be isolation, confinement, monotony of food, scientific failures during the mission or sleep difficulties. In order to understand the psychological well-being of the analog astronauts, the project PSYCHSCALE was created. It aims to study crew anxiety and depression levels before, during, and after the mission with special attention to the “third quarter phenomenon”.

The third quarter phenomenon
Based on the idea that the human behavior and health can change due to the above mentioned factors, the different stages of the mission can be classified and characterized as follows:

Quarter 1: heightened excitement, nervousness or anxiety
Quarter 2: settling down to routine, monotony
Quarter 3: emotional outbursts, aggressiveness, rowdy behavior
Quarter 4: preparation for the end of the mission and focus on reunification with friends and family and the “real” world
Researchers suggest that around the third quarter of a mission, emotional outbursts of individuals are increasing and their behavior is becoming rowdier and more aggressive. But this does not apply to all individuals in an isolated group. Therefore, the third quarter phenomenon is still a well-debated concept amongst researchers.

How the experiment works
In order to understand possible changes in psychological well-being of an analog astronaut, each of them will answer one individual questionnaire before, during, and after the Mars analog mission takes place in Israel. During the mission, the analog astronauts will be asked to fill out the same questionnaire once a week. In total, they will have to answer out six questionnaires. The questionnaires will be delivered to all of the analog astronauts at the same time. This way, the PSYCHSCALE team can also track the overall crew anxiety and depression levels when analyzing the questionnaires. By working with the Mission Support Center in Innsbruck, Austria, which monitors the mission, it will also be possible to identify some reasons for increased anxiety or depression, for example: poor air quality in the habitat.
“In addition to support during the mission, we hope to be able to suggest definitive mechanisms that can be implemented by mission support to ensure health and safety of the crew before and after the mission”, states the principal investigator of this project Dr. Tricia L. Larose.

SANDEE
Interdisciplinary Center (IDC) Herzliya, Israel, Ben-Gurion Univ. of the Negev, Israel
Sand transport during Aeolian processes in the Negev Desert – Electrical Effects and implications for Mars
Affiliation: School of Sustainability, Interdisciplinary Center (IDC), Herzliya, Israel

OeWF delegation visits SANDEE experiment

OeWF delegation visits SANDEE experiment

Electrically charged sand? Sandstorms on Mars could represent an underestimated risk
What do we see when we look at an image of the surface of Mars? A vast, reddish landscape with many rocks. And sand! Sand is the key word in this experiment, as the name SANDEE already suggests. By simulating sand storms of varying speeds, the team from Israel will be able to measure dynamic, mineralogical and electrical characteristics of those particles. This will help future Mars missions to be better prepared.
First of all, electrified sand storms pose a great risk to technology and human health. Whether a sand storm is electric or not depends on several factors, such as the particles’ characteristics or wind speeds. When those particles are in motion, they might collide with other suspended particles or impact the surface through the energy they got from the wind. This then leads to charge separation and the build-up of strong electric fields. Hence, the sand storm is electric. Charged particles in electrified sand storm tend to adhere strongly to exposed surfaces. They also have a tendency to attach to mechanical parts and therefore diminish maneuverability of landers and rovers and reduce the output of solar panels.

How the experiment works

Since no such experiments with Mars-soil have been conducted before, the PI Prof. Yoav Yair seizes the opportunity at the AMADEE-20 Mars-analog mission in October 2021. For some time now, he has been working on observations of electrified dust storms in the Israeli Negev desert and measured extreme values of more than 10 000 V/m during dust events. In comparison: 130V/m is the average value in fair weather.
So, how does the experiment work? A portable wind-tunnel (as seen in the picture below) will be deployed near the habitat where the analog astronauts live. Once calibrated, the analog astronauts will insert a specific amount of Earth soil. The process starts: five different wind speeds will be set and for each speed, the electric field will be measured. For the last five runs, “Mars soil” will be used. This soil has the same mineralogical composition as the soil on Mars and was manufactured by a company in Florida, one of the few worldwide facilities that produce Mars-like soil.
In addition, a vertical array of traps oriented along the wind direction will be placed in the tunnel. Particles that are heavier will stay closer to the surface, while lighter particles will get lifted up by the wind. Those traps will be used for sampling particles in order to calculate the related sand fluxes and to analyze particle characteristics.
The experiment will be repeated at night under dark conditions. “The night-time run can answer the question about photon emission as a precursor for electrical breakdown: if we will be able to observe such optical emissions, it will indicate a high-level of charge carried within the dust, even if we do not measure this quantity directly”, explains Prof. Yoav Yair. Since it will not be possible to see those emissions with the naked eye, cameras inside the tunnel will be used. They can measure the intensity of possibly emitted photons.
To summarize, the main focus of the experiment is to compare the characteristics of terrestrial and Martian soil movements, as well as to determine the velocity at which electrical charging begins.

SHARE
Ecole Nationale Supérieure de Cognitique, Bordeaux INP, France
Affiliation: IMS laboratory, Ecole Nationale Supérieure de Cognitique, Bordeaux INP, France in collaboration with Association Planète Mars

Map of 2 different person (c) SHARE

Map of a person in the Mission Control Center, who made a cross every 30 seconds where he thought the vehicle was in comparison to the map of an VR-astronaut (c) SHARE

Find your way even in unknown terrain with the right communication
One could almost take this as the motto of the team from France, which will participate in the AMADEE-20 mission with a highly significant experiment. It is called SHARE. Six members, among them one professor and five students, are involved in this trial that addresses common challenges concerning communication, navigation, and perception.

It is known that the description of a location is rather difficult, since definitions of the surroundings and orientation information are mostly approximate and subjective. An expert in human factors addressed this issue in an experiment with soldiers in the field. After a simulation, several soldiers were asked to determine the location of their opponents on a map. Depending on the efficiency of communication among soldiers, the results varied. After reading this study, the SHARE team came to the conclusion that this problem in particular can be examined during Mars Analog missions, like AMADEE-20. In the course of the mission, the analog astronauts in Israel will have to communicate with the Mission Support Center in Innsbruck and follow their directions.
Principal investigator Prof. Jean-Marc Salotti explains how this experiment will work: “One person in the Mission Support Center in Innsbruck will be selected. That person will be in charge to define a location in the field, trace a path on a map and write a list of navigation instructions to reach that destination. Then, the analog astronaut will receive the message but not the map with the path. He or she will have to drive a quad and try to follow the written instructions. GPS information will be provided to the Mission Support Center in Innsbruck. That way, we can evaluate the differences between the path described and the actual path the analog astronaut followed.” The team already gained some experience on this topic by having used a virtual terrain of Mars and a virtual rover. As one can see on the pictures below, the results can vary significantly.

Trials like those are helpful for future planetary exploration missions, as the SHARE-team points out three good reasons:
First, the definition of geographical terms can be made more explicit and agreed upon by everyone.
Second, new technical terms or expressions may eventually be added and others discarded, as in aviation for communication between flight control and the pilot.
Third, training in analog terrain can help a lot in finding the best way to communicate geographical and navigation information.

TUMBLEWEED
Technical University of Vienna, Austria
A wind-driven, rolling rover explores large areas
Affiliation: Technical University of Vienna, Austria

Tumbleweed rover (c) Team Tumbleweed

Tumbleweed rover (c) Team Tumbleweed

About the Team
To take part in ESA’s Odysseus Space Contest 2017, three students from the Sir Karl Popper School in Vienna developed the rover TUMBLEWEED. They won the contest and later two of the founders moved to the United States and the Netherlands for their studies. As a result, more and more interested parties from different countries joined the team, so that it now consists of 57 members. The device is constantly being further developed in order to be able to participate in future Mars missions. But before this will be possible, a number of components still need to be tested and checked. For this purpose, the team will participate in the Mars-Analog Mission AMADEE-20 by the Austrian Space Forum (OeWF).

About the rover
TUMBLEWEED is the English name of a shrub that can travel long distances driven by wind only. The TUMBLEWEED rover measures more than 2m in diameter and has adopted the shrub’s round shape and wind-driven mode of movement. Sara Toth, spokesperson for Team TUMBLEWEED, says: “Wind driven means in our case that it is not possible to control the rolling rover and we therefore don’t need a remote control. The idea is to deploy the rover at the poles of Mars and then let the wind drive it towards the equator. This allows large areas of Mars to be “rolled off” and examined more closely with the help of cameras, atmospheric sensors and magnetometers that can be installed in TUMBLEWEED.”
During the Mars Analog Mission, the main focus will be on testing the rover’s rolling and wear behavior and evaluating the performance of its solar cells. Such data is important for the further development and improvement of the rover, as the AMADEE-18 mission has already shown. “The AMADEE-18 mission enabled us to identify materials as well as solar cells that are unsuitable for the rover. This knowledge helped us to develop our subsequent prototype. During the upcoming AMADEE-20 mission we hope to obtain further data on the wear behavior of our current prototype”, explains Sara Toth.
Once TUMBLEWEED is brought to perfection and ready for a Mars mission, other scientists will also have the opportunity to integrate their own sensors into the rover with little effort.
Website: www.teamtumbleweed.eu

VFR-eFAST
Department of Anaesthesia and Intensive Care, Örebro University Hospital
Validity and Feasibility of Remote extended Focused Assessment Sonography in Trauma
Affiliation: Department of Anaesthesia and Intensive Care, Örebro University Hospital, Sweden and University Hospital of Cologne, Germany

VFR-eFAST Hardware

VFR-eFAST Hardware

Ultrasound examination in space by using an instructional video
Astronauts usually come from a lot of different fields of expertise with a variable knowledge of specific topics. They must be able to cover a lot of different tasks and challenges they might encounter during their space mission. However, sometimes a very specific qualification is required, for example medical skills. Although it is expected that a future Mars crew will have at least one medical professional onboard, this will not always be the case. That is why ÖWF’s analog-astronauts will test the research project called “VFR-eFAST” during the ÖWF’s Mars analog mission in Israel in October 2021. With VFR-eFAST, astronauts might be able to perform an ultrasound examination with minimal previous medical training.
The team wants to investigate whether it is possible for a non-medically trained astronaut to perform an ultrasound examination of the thorax and abdomen with a clinically acceptable quality.
Since there is a risk of the astronauts losing connection to the Mission Support Centre, or simply being too far away to receive live medical guidance, the idea is that they should be able to execute such a task based on a short video instruction only.
The experiment is significant because of the unique setting of a Mars analog mission, and also because of its focus on remoteness and isolation, which will be huge factors when we eventually venture on to the Red Planet.
Once the analog-astronauts are done with the task by using the Philips Lumify ultrasound equipment, the results will be analyzed in a standardized way to reveal accuracy and usefulness of the examination. Factors like image quality and the time it took the analog-astronauts to find the correct view will be taken into account.
By asking what the expected outcomes are, principal investigator Dr. Anton Ahlbäck answers: “We expect to see that all of the analog astronauts will be able to successfully perform the examination.” If that is the case, it will have positive impacts on future Mars missions, as he concludes: “With the right results, this experiment has the potential to contribute significantly to the development of similar systems, which in turn could be used in future crewed space missions.”

Additional cooperations

ESA logo with support ofMELT PEEK 3D printer
The Austrian Space Forum, in cooperation with the European Space Agency, tests the MELT 3D printer´s ability to print aerospace-quality plastics in the frame of robotic and crewed planetary missions. The aim is to investigate if 3D printing can support scientific operations in a remote and harsh environment, analog to Mars.

Dietetics – FH Gesundheitsberufe Oberösterreich
Nutrition plans for the field crew in Israel.

Sigmund Freud University Vienna
The Sigmund Freud University Vienna engages in the human factors analysis of the AMADEE-20 expedition focusing on the perceived us-vs-them phenomenon. The research intends to reproduce the emergence and mitigation measures to avoid psychological tensions between the MSC and field teams. Under the lead of Prof. Stefan Hampl, teams of students also investigated the emergence of psychological conflicts in previous missions, utilizing the data of the OeWF multi mission science data archive.

Mission architecture

AMADEE operation infographic
Figure 1: Conceptual architecture of the AMADEE-20 expedition: A 10min time delay reflects the signal travel time between Earth and Mars. The Mission Support Center in Innsbruck/Austria is the single-line-of-contact between “Earth” and “Mars”.

Roadmap

  • Jan2019: Announcement of Opportunity released
  • 04Mar2019: Submission deadline for experiment proposals
  • 15Apr2019: Notification of Acceptance/Non-Acceptance
  • May2019: AMADEE-20 Science Definition Workshop
  • Nov2019: Experiment interactions defined, preliminary mission definition, release of the first iteration for the AMADEE-20 Mission Manifest (the main expedition planning reference document)
  • Sep2021: Shipping to target site starts
  • 04-31Oct2021: Field Mission
  • Dec2021-Jan2022: Return of hardware to Innsbruck, shipping back to home institutions
  • May2022 (tbd): AMADEE-20 Science & Technology Workshop (location tbd)

Download AMADEE-20 documents:

 

AMADEE-20 Partner Logos

Fortis Official timekeeper of the AMADEE-20 Mars Simulation.

This article is available in: German

AMADEE-20, Israel